Shotgun Functionalize R

- an R-package for functional comparison of metagenomes

Introduction

ShotgunFunctionalizeR is an R-package for functional comparison of metagenomes.

Example I: Ocean's Interior

- ► Metagenomes sampled seven depths in the Pacific Ocean (data from DeLong et al. Science 2006).
- **ShotgunFunctionalizeR** contains tools for annotation, visualization and statistical analysis of data generated from high-throughput shotgun sequencing.
- **ShotgunFunctionalizeR** can be used to identify both genes and pathways that are differentially abundant between metagenomes.
 - ► Gene-centric analysis uses gene-families (e.g. COGs and EC-numbers).
 - ► Pathway-centric analysis uses sets of gene-families (e.g. KEGG and COG pathways).

Screenshots showing **ShotgunFunctionalizeR** in action!

ShotgunFunctionalizeR is available at

- ► Poisson regression analysis revealed several gene-families have a significant correlation to sample depth.

Gene-family	Coefficient	P-value	FDR	Annotation
COG0810	-0.37	4.5×10 ⁻²⁰	1.5×10 ⁻¹⁶	Periplasmic protein TonB, links inner and outer membranes
COG0415	-1.47	4.7×10 ⁻⁹	8.0×10 ⁻⁶	Deoxyribodipyrimidine photolyase
COG2141	0.46	2.8×10 ⁻⁷	3.2×10 ⁻⁴	F420-dependent tetrahydromethanopterin reductase and related flavin-dependent oxidoreductases
COG2801	1.14	5.2×10 ⁻⁷	3.6×10⁻⁴	Transposase and inactivated derivatives
COG5178	-0.36	7.1×10 ⁻⁷	3.6×10 ⁻⁴	U5 snRNP spliceosome subunit

The five most significant gene-families in the Poisson regression analysis. The sign of the coefficient indicates whether their abundance increase or decrease with increasing sampling depths.

► The highly significant gene-family deoxyribodipyrimidine photolyase (COG0415) is involved in repair of UV radiation-induced DNA damage. The abundance of this gene-family decreased with increasing sampling depth.

http://shotgun.zool.gu.se

Implementation

- **ShotgunFunctionalizeR** contains several standard and previously published statistical testing procedures.
 - include Procedures analysis for gene-centric binomial and hypergeometric tests (derived from Poisson and multinomial sampling assumptions respectively) and a test using Gaussian approximations.
 - Procedures for pathway-centric analysis include overrepresentation test (using Fisher's exact test), a χ^2 test of independence and the Gaussian sum test (also known as the d-statistic on the IMG/M web site).
- ► We have also implemented a novel method based on a Poisson model. In contrasts to most other procedures, the Poisson model is

The estimated trends for two significant gene-families, deoxyribodipyrimidine photolyase (COG0415) and transposase and inactivated derivatives (COG2801).

Example II: Mouse Gut

- ► Gut metagenomes samples from lean and obese mice (Turnbaugh *et al.*) Nature 2006).
- ► Gene and pathway-analysis in **ShotgunFunctionalizeR** using direct comparison of two groups (Poisson model).
- Several genes and pathways with significant difference in abundance between the lean and obese mice could be identified.
 - Pyrimidine biosynthesis Signal transduction histidine kinase

highly flexible and thus applicable to a wide range of experimental designs, e.g. regression analysis.

ShotgunFunctionalizeR - an R-package for functional comparison of metagenomes

Erik Kristiansson^{1,2}, Philip Hugenholtz³, Daniel Dalevi⁴

¹Department of Zoology - University of Gothenburg, ²Department of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, ³Microbial Ecology Program, DOE Joint Genome Institute, ⁴Department of Computer Science And Engineering - Chalmers University of Technology and University of Gothenburg Contact: erik.kristiansson@zool.gu.se or daniel.dalevi@chalmers.se

To the left a gene family (signal transduction histidine kinase, COG0642) and to the right a pathway (pyrimidine biosynthesis) with a significant difference in abundance between the two groups.

🛱 Svenska Sällskapet för Medicinsk Forskning

UNIVERSITY OF GOTHENBURG The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning